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I.  INTRODUCTION 

There now exist several numerical codes to predict the two-phase 
interior ballistics of solid propellant guns. The debate on the correct- 
ness of the governing equations should seek the practical effects of 
their differences. This report will compare the predictions of three 
such codes for the interior ballistic performance of a 155mm howitzer 
with a high zone charge. 

The codes to be compared are those of the University of Illinois, 
Calspan, and Gough.  Differences in the theoretical approach have been 
described by Kuo^ elsewhere. A comparison of the key differences is 
shown in Table I. 

Table I.  Comparison of Features 

Illinois Calspan Gough 

Igniter Flow Rate Specified Computed Specified 
Bed Compaction None Elastic Inelastic 
Ignition Criteria Bulk Temp Surface Temp Surface Temp 
Area of Igniter Ignored Considered 

76V/Tr 
Ignored 

Effective Particle 6V/S 6V/S 
Diameter 

Internal Boundaries None Implicit Explicit 

The common data are the best independent estimates of the required 
input for the codes. To the extent possible, code peculiarities were 
not considered in selecting the input data.  Physical measurements, 
burning rate and ignition experiments, shell pushing test experiments, 
and thermodynamic calculations provided input without £ posteriori adjust- 
ment to improve code-test agreement.  Constants for empirical correlations 
for viscous drag and heat transfer were those suggested by the original 
correlations. Arbitrary assignment of other constants was made usually on 
the code author's recommendation. 

This task has the limited goal of comparison of the predictions.  It 
does not firmly establish the roots of any differences nor does it attempt 
to simulate gun firings by manipulation of terms and parameters.  The 
approach is to identify the ii priori prediction capability with independent 
input.  One exception was an arbitrary increase in bore resistance to match 
peak bore resistance and peak chamber pressure with test values for the 
gun when peak pressure was under predicted as has been the usual experience 
with interior ballistics codes.  Even though only one problem has been run, 
some semblance of generality has been retained. 

1 Kuo,  K.  K.f   "Report on the JANNAF Workshop on Theoretical Modeling and 
Experimental Measurements of the Combustion and Fluid Flow Processes 
in Gun Propellant Charges, " 13th JANNAF Combustion Meeting,  Monterey,  CA, 
September 1976.     Proceedings  to be published. 
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II.  EXPERIMENTAL 

The Problem 

The 155mm howitzer with a charge of 11.8kg of M30 propellant has been 
observed to be prone to pressure waves under certain ignition con- 
ditions2. The charge-in-chamber configuration has been approximately 
simulated by considering a uniformly tapering chamber holding a bore 
size charge with a one inch standoff from the breech. 

Input data are given in Table II. About the physically measurable 
data there should be no debate. About the other data there are definite 
uncertainties because they can only be indirectly determined. 

Table II.  Input Data 

Initial Temperature 
Speed of Sound in Packed Bed 
Settling Porosity of Nominal Composition 
Left Hand Boundary of Propellant 
Right Hand Boundary of Propellant 
Mass of Propellant 
Density of Propellant 
Number of Perforations 
Outside Diameter of Grain 
Inside Diameter of Grain 
Length of Grain 
Burning Rate Coefficient 
Burning Rate Exponent 
Ignition Temperature 
Chemical Energy of Propellant 
Molecular Weight of Propellant Gas 
Specific Heat Ratio 
Covolume 
Chemical Energy of Igniter 
Mass of Projectile 

294 K 
442 m/sec 

0.424 
2.5 cm 

79 cm 
11.8 kg 
1.58 g/cm 
7 
1.05 cm 
0.081 cm 
2.41 cm 
0.012 cm/s /(MPA) 
0.67 

450 K 
4420 J/g 

23.46 
1.24 
0.945 cm /g 

3450 J/g 
43.6 kg 

67 

Igniter flow rates needed for the Illinois and Cough models were 
derived from experiments by White, et al^.  Flow from the base pad is 
assumed to occupy the first 2.5cm from the breech.  Although the real 
base pad is only about 0.6cm thick, numerical considerations dictate 
that the source extend over a longer distance.  In Cough's code, in- 
stability results when the igniter flow does not occupy the entire 
standoff gap. 

Clarke, E. V., May, I. W., "Subtle Effects of Low Amplitude Pressure 
Wave Dynamias on the Ballistic Performanae of Guns, 21th JANNAF Com- 
bustion Meeting,   CPIA Pub 261,  p 142-156,   September 1974. 

White,  K.  J.,  Price,   C.   F.,  May,  I.   W.,   "Blaok Powder and Clean 
Burning Igniter Train Studies," 13th JANNAF Combustion Meeting,  Mon- 
terey,   CA,  September 1976.     Proceedings to be published. 
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Bore resistance is computed from an expression proposed by 
Pilcher . 

P   = f m (1+ai) 
res   l MT+bF 

where z is the projectile velocity, a and b are constants, f(z) is the 
static friction pressure.  For this problem, f(z)   is shown in Figure 1 
where is also shown some results of using the formula. After the nominal 
values allowed an under-prediction of peak chamber pressure, values for 
the constants were decreased to give a better match to resistance measure- 
ments for low zone charges5. The ratio between the two was kept constant 
The shaded area in Figure 1 includes all the peaks of resistance vs travel 
functions for the low zone firings. That they do not occur at the peak 
static resistance distance shows a deficiency in either the formula or the 
test data. The short table on Figure 1 shows the effect on maximum pressure 
ot changing the constant a from its nominal value fa )       P   values 
in MPa. o^   max 

The Illinois and Gough codes use the formula 6V/S[where V is the 
particle volume and S the wetted surface) for an effective spherical 
particle for drag computation.  Surface is the burning surface including 
the perforations.  The Calspan code uses the cube root of the particle 
volume ignoring the perforations.  Random orientation of the particles 
makes the internal passages mostly unavailable for axial gas flow  To the 
gas they appear as solid right circular cylinders.  For the particle di- 
mensions on this problem the three approaches yield the following estimates 
tor effective diameter initially and after 20% of the web has burned: 

Initial       20% Web Burned 

CalsPan 13mm 
Illinois; Gough 9mm 
Solid Cylinders i3mm 

12mm 
7mm 

12mm 

The larger effective diameter translates to a proportionately lower 
drag estimate.  In trials with an earlier version of the Gough code the 
revised formula caused the predicted first reverse pressure gradient to 
tall by about one third.  As the grain burns the disparity ratio grows 
although the effect on the flow probably decreases.  In this comparison 
problem the Illinois and Calspan codes have been run with the original 
formulation; the Gough code has used the solid cylinder formula 

Pzloher, J 0., Wineholt, E. M.s "Analysis of the Friation Behavior 
at Hxgh Sliding Velocities and Pressure for Gilding Metal, Annealed 
Iron,  Copper and Projectile Steel," BEL Report  (in press),   1976. 

DeLoremo,  J.,   Vallado,  A.   C,   "Compilation of Traces and Tabulation 
of Round to Round Data for the 265mm XM211 Program  (Phase I)  Conducted 
at Pvcatrnny Arsenal 12-22 April 1976," unpublished,  Pioatinny Arsenal, 
May 1976. 

13 
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Because one of the main purposes for development of these codes is 
finding the effect of igniter variations, two configurations have been 
computed. The first was a nominal base pad plus center core; the second 
was base pad only. 

Inputs peculiar to each code are discussed in the section on that 
code. 

A.  Illinois Model 

The Illinois model has been documented in three articles6,7,8 

which describe the approach and some results; the coding has not been 
published. Of note are the diffusion terms in the momentum and energy 
equations, the use of a solid phase energy equation, the bulk temperature 
ignition concept, and the treatment of the gas phase pressure gradient. 
Potential users of the model should be aware that there are a few differ- 
ences between the documented equations and the coding.  The only serious 
difference is that the coding uses a convective derivative for a coordi- 
nate system expanding at the projectile velocity as does Cough's code. 

Bulk Ignition Temperature is a concept peculiar to this code whereby 
ignition is assumed to occur when the solid phase has absorbed a specified 
amount of energy. An implicit assumption is made that the ignition energy 
is independent of rate of heating.  No experimental data are offered to 
estimate an input value. 

is 
To be consistent with the other two codes where surface temperature 

the ignition criterion, a bulk temperature must be computed that gives 
ignition at about the same time.  For a unit volume, the heat exchange 
from hot gas to solid at a constant heating rate is 

(l-*o) PCCTb-To) = QA tig(lA)/V. (1) 

from which the ignition time is 

t     PC(Tb-To)V. 

ig      QA 

6 
VanTassell,   W.,  Kviev,  E.,   "Combustion and Flame Spreading Phenomena 
in Gas Permeable Explosive Materials," Int J Heat and Mass Transfer 
18_ pp  2377-1386   (1975). 

Krier,  H.,  Rajan S.y   VanTassell,   W.,   "Flame-Spreading and Combustion 
in Packed Beds of Propellant Grains," AIAA J 14_ (3),  p 301-309   (1976). 

Krier,  H.,   Gokhale,  S.  S.,   "Predictions of Vigorous Ignition Dynamics 
for a Packed Bed of Solid Propellant Grains, " Intl J Beat and Mass 
Transfer,   19,  p 915-923,   1976. 

15 



The surface temperature of a semi-infinite solid can be taken from 
Carslaw and Jaegar 

A    /    TT 
T = T + fi  / ~J£. s   o  A  / ^*J 

from which the ignition time can be extracted and equated to the bulk 
ignition time and the resulting equation solved for the Bulk Ignition 
Temperature rise. 

Tb-To = ^W2 • C33 

For the values used in this problem the expression reduces to 

Tb-To = 705/Q . 

The Illinois code predicts a heat flux varying from 50 to 300 cal/cm /sec 
with an average value of 180,  The resultant bulk temperature rise is then 

T, -T = 40K . b o 

10 An alternative approach is to consider the data of Summerfield et 
al   [Fig. 16, p. 105] which gives ignition time as a function of 
heating rate 

hgn  =  ^  ' (4) 

Applying the data reported to the formulation and assuming a constant 
heating rate 

Substituting Q for Q   in Equation (1) yields an estimate 
L Llg 

T, -T = 3.30K  . b  o 

That the two estimates are close to each other is satisfying enough 
to use 40K as the bulk ignition temperature rise for this problem. 
Krier et al have used a series of temperature rises ranging from 5 to 
250K as an arbitrary input parameter. 

g 
Carslaw,  H.  S.s  Jaeger,  J.   C,   "Conduction of Heat in Solids," Ox- 
ford University Press,  London,   1959. 

Summerfield, M., Caveny, L. H., Ohlemiller, T. J., DeLuoa, L., "Ig- 
nition Dynamics of Double Base Propellants," in BRL Report 1707 (ed 
by I.   W.  May and A.   W.  Barrows),  April 1974,   AD #919315L. 

16 



Heat feedback to the solid phase during combustion continuously in- 
creases the solid phase temperature. As suggested by VanTassel and Krier 
the "heat of vaporization" is taken as 10% of the total energy release in 
combustion. A difficulty arises in adding the heat of vaporization as a 
sensible heat effect when it nominally represents a phase change. The 
payoff comes at burnout when there is no sink for the stored sensible 
heat in the solid phase.  Program execution stops before burnout. 

The code has been applied to two other problems.  Beckstead et al 
found it a useful tool in DDT analysis of a simulated rocket motor grain. 
Krier and Gokhale" modeled a propellant bed ignited by a detonating 
pellet.  In the latter application, the detailed results from a typical 
page of output showed some anomalous values.  Gas temperatures were re- 
duced well below the initial temperatures in the forward portion of bed 
while the particle temperature was rising - a violation of the second law 
of thermodynamics.  Gas temperatures in several cells at the breech were 
well above the flame temperature of the pressurizing gases even though no 
external work is done on the bed. A porosity minimum of 0.25 was arbi- 
trarily assigned even though the assumption of no particle interaction 
has long been invalid by the time the porosity drops to that value.  At 
that point porosity gradients become arbitrary. 

B.  Calspan Model 

The Calspan artillery code has been used to simulate several guns. 
Fisher et aliZ'10 reported simulation of a 155mm howitzer with coding 
adapted to the 155mm configuration. 

Input for this code is more extensive than for the other two.  De- 
tails are required for the igniter train to include igniter burning rate 
function, thermal properties, geometry of base pad and/or central core. 

11 

12 

13 

Beckstead,  M.   W.t  Peterson,  N.  L.,  Piloher,  D.   T.,  Hopkins,  B.   D., 
Krier,  H.,   "Convective Combustion Modeling Applied to Deflagration- 
to-Detonation Transition," 12th JANNAF Combustion Meeting,  CPIA 
Publication 273,   1975. 

Fisher,  E.   B.,   Graves,  K.   W.,  Trippe,  A. P..,   "Application of a 
Flame Spread Model to Design Problems in the ISSmm Propelling 
Charge," 12th JANNAF Combustion Meeting, CPIA Pub 273,  p 199-219, 
December 1975. 

Fisher,  E.   B.,   Graves,  K.   W.,   "Propellant Ignition and Combustion 
in the  15Smm Howitzer," Calspan Corp Report VQ-5524-D-2,   January 
1975. 

17 



equation o£ state, and ignition temperature.  Comparing references 
shows that no single set of values for black powder has been used in 
Calspan's applications.  For this test problem input values were a 
combination of references13-17.  Key values are shown in Table III. 

12-16 

Table III.  Black Powder Properties 

Parameter 

Ignition Temperature 
Heat of Explosion 
Density 
Burning Rate Coefficient 
Burning Rate Exponent 

Value 

550K 
670 cal/g 
1.8 g/cc      24 
1.2 cm/sec/atm" 
0.24 

Source 

Ref.17 
Ref.17 
Ref.17 
Ref.18 
Ref.18 

Other constants for computing the thermodynamic properties of the black 
powder and the product gas were as used by Calspan. 

12 
Calspan's simulation of the 155mm howitzer  used arbitrary values 

for shot start and particle drag to force a match between predicted and 
observed values of peak pressure and pressure wave amplitudes, 
values are used in this study. 

Nominal 

Three different drag laws have been used in the various applications 
of the code.  For this case the law used is that supplied with the code: 

2f  ^l-tt1-. r -v 

c m 
u-u (5) 

where £=1.  (Note that in Ref. 12, f=5.) 

A distinctive feature of this code is that igniter input is com- 
puted rather than specified. When the black powder charge configuration 
is specified, ignition and gas production and flow from the igniter are 
coupled to the main bed computation.  For computer time considerations 
the sequence is artifically speeded by assuming the base pad is already 

14 

15 

16 

17 

Fisher,  E.   B.,  Trippe,  A.   P.,   "Development of a Basis for Acceptance 
of Continuously Produced Propellant," Calspan Report No.   VQ-5163-D-1, 
November 1975. 

Fisher,  E.  B.,  Trippe,  A.  P.,   "Mathematical Model of Center Core Ig- 
nition in the 175rm Gun," Calspan Report VQ-5162-D-2,  March 1974. 

Fisher,   E.   B.,   "Propellant Ignition and Combustion in the  105mm 
Howitzer," Calspan Corp.  Report No.   VQ-5524-D-1,  January  1975. 

Cough,  P.  S.,   "Fundamental Investigation of the Interior Ballistios 
of Guns," Space Research Corporation SRC-R-75,  August 1974   (also 
IHCR 75-3,   Naval Ordnance Station). 

18 



ignited by the primer. Variations have been run with the propellant 
also ignited near the base o£ the charge and with the entire black 
powder charge ignited. To make the Calspan code more like the other 
codes, one could specify a completely ignited black powder charge with 
propellant at ambient temperature. 

C.  Gough Model 

The Gough model has been under continual revision since the first 
version17. A major revision18 added internal boundaries to handle the 
gas/bed interfaces, especially for Army propelling charges.  A second re- 
vision19 added the treatment of an irreversible constitutive law for 
particle-particle stress, an unsteady boundary layer, and unsteady combustion, 

Peculiar input is needed for the filler element between the front end 
of the charge and the projectile, for the decay constant for sound speed 
in the packed bed.  Adiabatic inelastic compression of air in front of 
a 0.25kg salt bag was assumed as a first approximation.  Inelasticity is 
a compromise to permit stable calculation at the boundary.  Some support 
for the adiabatic compression is found in the data of East and McClure  . 

This code provides the most complete description of the mechanical 
aspects of the bed dynamics. With explicit representation of boundaries 
between regions separated by discontinuities, numerical smearing of the 
boundaries is eliminated.  Increased friction and stress transmission as 
compaction increases permits more accurate computation of gradients within 
the bed. 

To retain a degree of commonality in this study, the most recent code 
developments have not been used.  Neither transient combustion nor the 
Shelton type boundary layer analyses has been exercised or analyzed enough 
to permit confidence in the results. 

III.  RESULTS 

The computed predictions of each code are compared in Table IV with 
test data and with the prediction of the Baer-Frankle lumped parameter 
code with the same input.  Values in parenthesis are for the base pad 
only igniter configuration. 

18 Gough,  P.  S.j   "Numeriaal Analysis of a Two Phase Flow with Internal 
Boundaries," Paul Gough Associates PGA-TR-75-4,   November 197S. 

19 Gough,  P.  S.,   "Numeriaal Analysis of a Two Phase Flow Model of In- 
terior Ballistics," Paul Gough Associates PGA-TR-76-2,  April 1976. 

East,  J.  L.,  McClure,  D.  R.,   "Experimental Studies of Ignition and 
Combustion in Naval Guns," 22th JANNAF Combustion Meeting,   CPIA 
Publication 273,  p 221-257,  December 2975. 

20 
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Table IV. Comparison of Predictions - Nominal Input (Base Pad Only) 

Experiment 

Pressure Diff (MPa) 
First Trough -6(-100) 
Second Peak  14( 150) 

Max Breech    312(450) 
Pressure(MPa) 

Time (Pirmn-P  ) 6 ,  * 1000 max^ 
(ms) 

Muzzle Velocity 830(860) 
(mps) 

Travel at Pmax(
m) 

Flame Spread Rate 
(mm/ys) 

CPU Time (min) *    16**      11 0.1 

Illinois Calspan Cough Lumped Parameter 

-43(-26) -8(-4) 
14(10) 

251(240) 

-6(-8) 
24(24) 

272(270) 268 

7.7(8.0) 6.5(6.7) 6 

787(730) 785(790) 793 

0.2(0. 
1.0(1.1) 

2)  0.2-K).5 
0.6(0.6) 
0. 2->0.5 

0.5 

* Halted at 26 min 
** Estimated Equivalent 1108 Time 

Of first, but not surprising, note is that peak pressure and muzzle 
velocity predictions are lower than firing test values.  Also not sur- 
prising is that these codes take at least 100 times more computer time 
than a lumped parameter code. 

Figure 2 examines the predictions of pressure wave behavior for21 
nominal igniter.  The shaded area is a composite of ten firing tests 
The time scale is translated for each case to align all the curves at 
the first negative pressure difference.  Qualitative differences are obvious 
in magnitude of the waves.  The Illinois code predicts a large first 
negative but was stopped from running further because the time increment 
was too small to allow competitive calculations.  Only the Cough code 
followed the observed gun behavior. The dip between 6 and 7 milliseconds 
in the Cough prediction derives from a strange dip in breech pressure 
immediately after its maximum. 

Figure 3 shows pressure wave behavior for a base pad only igniter. 
The shaded area represents a composite of five firings with only 10.9kg 
of propellant [sequence A20, Ref. 21].  Two similar waves have been seen 
in 11.8kg charges [Rd A127, 165, Ref. 21] that are presumed to be due to 
base ignition.  One case is known of catastrophic pressure wave.  Values 
shown as experimental in Table IV represent typical values.  The Illinois 
code predicted a smaller first reverse difference.  The Calspan and Cough 
codes predicted no substantial change.  None approached a catastrophic 
condition. 

21 Firing Record P82415 Aberdeen Proving Ground,  March 1974. 
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Such indifference to the presence of the center core raises a 
serious issue in predictive capability of the codes.  If the igniter 
truly functions as described, the codes are somewhere missing an import- 
ant piece of physics.  If the codes are correctly formulated, the igniter 
must not be working as described. Only well controlled experiments in 
measurement and prediction will be able to resolve the difficulty. 

It is beyond the scope of this report to examine each code's sensi- 
tivity to adjustments in input data in an attempt to match predictions 
with test results. The limited amount of such testing by this author and 
the codes' authors has shown that the drag coefficient and low pressure 
burning rate can be manipulated to obtain "correct" pressure waves and 
peak chamber pressures.  Justification for such changes is a separate 
topic. 

Predicted and measured breech pressure for the nominal igniter are 
shown in Figures 4 and 5. 

For those who believe that a correct peak pressure and muzzle 
velocity is a necessary condition for acceptance of other code pre- 
dictions, a higher resistance was hypothesized by assuming a weaker 
dependence of friction on projectile velocity. The wave dynamics were 
essentially unaffected. 

Code efficiency can be measured by CPU time shown.  To maintain 
stable calculations, the Illinois code restricts the time step severely 
during the first cycle of the pressure difference wave.  Calspan's de- 
tailed igniter description causes long bed ignition delay time; and thus 
long times to problem completion.  All times are for UNIVAC 1108. 

The Calspan and Cough codes predict that the flame spreading speed 
increases from 0.2mm/ys to O.Smm/ps as it traverses the bed.  The Illi- 
nois code shows a smaller increase.  Experimental values are not 
available for the true rate. 

Anomalous Results 

For those predictions which have not been verified by measurement, 
one must rely on intuition and analysis to decide whether to believe 
the predictions.  Examination of the detailed results of these codes 
show anomalies that reveal errors in the models. 

The Illinois code assumes that the bed is always fluidized.  Ex- 
perience says that at the charge loading porosity of about 0.45 there 
is particle interaction and increased resistance to particle motion 
within the bed.  This fact is recognized in the Illinois code by arbi- 
trarily establishing a lower limit on local porosity (here 0.25).  An 
override operates whenever the solution of the equations says the 
porosity should be lower than this limit.  Thus a continuous fluidization 

23 



!S5i ' aynssayd    HD33a9 

X 
o 
E 

Q- 

1— CT! 

< +J 
rt 
a 

LU 

5 ■M 
3 

a^ PM 
I— c 

1 
hH 

^H 
111 03 

S 
B 

t- o 
2 

D 

O n ^ 
E 3 

^ Ul 
0 

OJ fH 

^ 
o 

h- <D 
(D 
fH 

D CQ 

LU 

1— •u 
CO 

Z> 
—^ p 
O •H 

< u. 

Ddw ' 3ynsssyd    HD33y9 

24 



!«1 ' aanssaad   HDaaya 

X 
O 
E 

a. 

I— 
< 

UJ 

S o 
o 
c 

t- 
i m 

■r- 

LU '71 

S 0) 

•- c^ *—* * 
M 

•H 
M X 
e - 

cu 
M 

LU 3 

5 in 
o — u 

h- (X 

■e 
Q o 

0) 
UJ Q 

l— 
to 
3 , 
—i LO 

O 0 
< -1 

•H 

odw ' 3ynss3yd   HD33a9 

25 



is assumed for all porosities above 0,25.  Where the override is im- 
posed, the solution is distorted by artificially changing the deriva- 
tives of porosity which appear in the governing equations. The degree 
of distortion cannot be estimated for the non-linear coupled equations. 
Whether the override offsets or aggravates the inaccuracies from ig- 
noring compaction is not directly determinable. That the two may 
offset each other is not enough justification to believe the results. 

Gas temperatures in the Illinois code indicate a deficiency in the 
energy equation. When the igniter functions at the breech end of the 
bed only, the gas temperatures in the forward portion of the bed drop 
below the initial temperature by as much as 50% while the solid phase 
temperature is rising with convective heat transfer between gas and 
particles as the only allowed mechanism, the second law of thermo- 
dynamics is being violated. Heat is free to flow in either direction 
between the phases before ignition. 

The Calspan calculations show no compaction of propellant grains 
at the projectile base as the first pressurization wave reaches the 
forward end of the bed.  Intuition and related experimental evidence 
say that drag carries propellant grains across the initial gap to 
stagnate at the projectile base.  Numerical difficulties were observed 
in earlier versions of Cough's code in that event with an implicit repre- 
sentation of the internal boundaries.  Whether the anomaly results 
from the governing equations or the numerics has yet to be determined. 

IV.  CONCLUSIONS 

Three overall findings may be listed: 

a. Each code predicts different pressure waves. 

b. Pressure wave predictions are indifferent to the presence of the 
center core. 

c. Nominal data are inadequate for quantitative predictions. 

Although the debate on the implications of the differences in 
approach may have been assisted by this study, no judgments on general 
applicability or accuracy of any one code are justified on the basis 
of this one case.  Each potential user must still make his own judg- 
ment of the merits of each code. 

What is clear from the study is that the present combination of 
input data and governing equations must be improved considerably before 
a_ priori predictions can be made for Army type propelling charges.  The 
state-of-the-art still requires some arbitrary assignment of parameters 
to force the desired agreement with test firings for a particular 
system.  Sensitivity studies from that base can then be made but not 
without recognition of the limitations imposed by the assumptions. 
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Immediate Research Needs 

Experimental measurements are needed to validate the formulations 
for bore resistance, drag and compaction, and igniter functioning. Bore 
resistance is important for calculating peak pressure and muzzle velocity. 
Drag and compaction laws and igniter functioning affect pressure wave 
behavior. 

The present differences between the Calspan and Gough codes are 
not wide enough to justify detailed numerical studies. Physics, not 
numerics, seem dominant. 
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